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Abstract 
Artificial neural networks may in some cases be alternatives to programmed computing. Since they offer a new important 

approach to information processing, we have investigated if the accuracy offered by this technique is good enough to extract 
physical information from the signals coming from a liquid argon time projection chamber. The results obtained 
implementing a neural network algorithm on a sequential scalar computer have been compared to those of a standard best-fit 

procedure on the same machine. This new method appears to be suited for the analysis of the events occurring in a very 
large detector, as that foreseen for the ICARUS experiment. 

1. Introduction 

We have constructed and operated at CERN a 3 ton 

liquid argon time projection chamber (LAr TPC) within 
the R&D programme for the ICARUS project [l]. Begin- 

ning in June 1991 we started to collect events from cosmic 
rays and from radioactive sources to measure the relevant 

physical parameters of the detector, to understand its re- 
sponse to ionizing events and to gain operating experience 
over a long period of time. 

So far, the way we have followed to extract physical 
quantities from raw data is to perform a least-squares fit of 
the signal using a theoretical analytical function. Since this 
procedure needs a long time to minimize over the function 
parameters, the possibility to use faster computational 
methods has been investigated. 

* Corresponding author. E-mail: raselli@pv.infn.it. 

In this paper we present a short analysis of the essential 
features of an approach based on the implementation of a 
neural network algorithm on a sequential scalar computer. 

The paper starts with a brief description of the data 
analysis based on the best-fit procedure. We then describe 

the neural network approach, its software implementation 
and the learning process. We finally conclude presenting 
and discussing the results obtained using different methods 
of analysis and a possible use for the ICARUS experiment 
at the Gran Sasso laboratory. 

2. The LAr TPC data analysis 

The construction of the 3 ton detector and the complete 
readout system of the LAr TPC are described in a separate 
paper, where some bubble chamber grade event images are 
also shown [2]. 
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Fig. 1. A LAr TPC collection signal with the parameter symbols: 
pulse position in time (t,), pulse height (h,) rise time CT,). 

The collection charge signal from each TPC readout 
channel is sampled with &bit flash ADCs at a frequency 

(S-20 MHz) that provides several measurements for each 
pulse and the resulting data are stored in raw data files 
containing 2048 samples times 192 channels per event. 

These signals carry three main quantities (Fig. 1) which 
are relevant for the physical analysis: 
t, pulse position in time, assumed as the point of inflec- 

tion of the signal leading edge, which contains informa- 
tion on the drift coordinate; 

h, pulse height, proportional to the collected charge; 

TV rise time, which depends both on the track dip angle 
with respect to the collection plane, and on the diffusion 

of the electron cloud during the drift. 
The parameters are extracted in two steps: first, the 

valid regions (those which contain some signals well above 
the noise) inside the huge event data are traced and an 
associated hit table is created (hit finding procedure); then, 
a least-squares fit is locally performed on each single 
region traced on the table, to recover the signal parameters 

(best-fit procedure). 
The hit finding algorithm returns, for each channel, a 

vector containing 100 consecutive samples (region of inter- 

est) approximately centered on the point of inflection of 

the signal leading edge. 
For the best-fit calculation we use an analytical func- 

tion with 6 parameters that reproduces relatively well a 
wide range of signal shapesThe parameters are: pulse 
height (h,), pulse position in time (t,), rise time (T,), 
amplifier decay time (TV) and include a linear baseline 
(a + bt). This function is defined by: 

tp - t 
exp - 

f(t) = h, 
i 1 ‘d 

/t -t\ 
+a + bt. (1) 

1 +exp L 
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The results based on the analysis of the data using this The highly dynamic development of neural networks in 
method, presented in Ref. [3], were used to study some recent years have stressed the need for hardware imple- 
important physical parameters of the detector: free electron mentations; at present VLSI general-purpose neural net- 
yield, recombination probability, drift velocity, diffusion work chips are commercially available. However, training 

coefficient, free electron lifetime, spatial resolution and 
their possible dependence on the electric field intensity. 

3. The neural network approach 

3.1. Neural network simulation 

An artificial neural network can be thought of as a sort 
of “black box” processing system; its operational capabil- 

ities allow the reproduction of an application x 4 y be- 

tween two sets of vectors. These sets represent, in the 
present case, all the possible signal shapes and the physical 

parameter values. 
The information stored inside the network, that allows 

the desired application to be performed, is not directly- 
meaningful, since it is developed in adaptive response to 

the specific problem. 
According to the Hecht-Nielsen theorem [4], any ana- 

lytical application can be computed with high accuracy 
using a feed-forward three-layer non-linear network with 

full connection between adjacent layers. 
A neural network of this type acts in quite a simple 

way. The basic processing units are the neurons which 

exchange information each other by mean of synapses. 
Each ith neuron has its own specific activation A, which 

is presented to the output Oi by means of a non-linear 
transfer function. The sigmoid function 

1 
Oi=S(Ai) = 

1 + exp( -A,) (2) 

is widely used and the output value of each neuron ranges 
between 0 and 1. Neurons are organized in three consecu- 
tive layers called the input, the hidden and the output layer 
respectively. Adjacent layers are linked by mean of a 

numerical coefficient matrix that determines the “synaptic 

strength”, the weight, of each connection. For the input 

layer the activation comes directly from the outside. In the 
hidden and in the output layer, the activation is the sum of 
the values coming from the neurons directly connected 
multiplied by the corresponding weight. The values trans- 

ferred to the output of the last layer are the result of the 
network process. 

The process of extracting physical information using 
this type of neural network architecture is straightforward: 
each signal is presented to the inputs of the network, which 
returns, as output, the relevant quantities for the physical 
analysis. The weights have to be carefully determined in 
such a way that the network could reproduce the desired 
application. They are adjusted using input and target data 
by means of an iterative learning process called training. 
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a network like this will involve some difficulties if the 

connections between neurons are made up of physical 

components with specific values. This problem may be 
solved by using any kind of sequential simulation software 
that handles the processing of the neurons. 

For this purpose we use a workstation DEC 3000/800 
AXP for network simulation. This is based on a 64-bit 
RISC CPU with a very high clock rate (200 MHz). We 
have developed a FORTRAN 77 language program which 
performs the simulation of the neural process [5]. The 
architecture of a neural network can easily be defined or 
modified simply determining the number of neurons in 

each layer. If the architecture fits the specific problem, the 
network can be trained by the program in such a way-that 

it could reproduce the desired application. The calculated 
weights are stored in a ASCII file. 

3.2. Network architecture 

In the present case the network should be able to 
receive, at the input layer, a number of ADC samples large 

enough to fully contain the signal leading edge for all the 
possible values of the rise time that may appear in the data. 
This means 100 points if we assume 10 MHz as ADC 

sampling frequency. The network response consists of the 
three quantities that are relevant for the TPC waveform 

analysis (pulse height, position in time, rise time); this 
means that we need at least three neurons in the output 

layer. Since the amplifier decay time and the baseline 
slope values affect the measurement of the previous three 
quantities, they are used as additional input parameters of 
the network. The value of the baseline slope can be 
directly measured during the hit-finding procedure whereas 
the amplifier decay time depends only on the electronic 
readout chain and its value is fixed by direct measurement 
with the test pulse data [3]. 

In short, the architecture of our network consists of 102 
neurons in the input layer and 3 in the output one. With 
respect to the number of neurons in the hidden layer, we 

started with 200 neurons. Later, to speed-up the network 

processing simulation, we lowered this number and in the 
final configuration we used 50 neurons. 

3.3. Training process 

There is a variety of learning paradigms in the literature 

(see Ref. [4,6]) depending on the network architecture as 
well as on the characteristic of the input/output data. In 
the present case we have followed the scheme known as 
back-propagation. 

The training phase is organized as follows: by means of 
a Monte Carlo program we simulate a set of 1000 signals 
using uniform distributions of the function parameters. The 
range of variation, shown in Table 1, is chosen in order to 
reproduce the different signal shapes as in real data. 

Table 1 
Range of variation of the function parameters used to reproduce 

the different signal shapes as in real data 

Parameter Min value Max value 

Pulse height 10 ADC-counts 200 ADC-counts 

Rise time 0.25 (IS 2.5 /.Ls 
Decay time 30 JLS 50 k*s 

Baseline pedestal 0 ADC-counts 100 ADC-counts 

Baseline slope - 1 ADC-counts/ ps + 1 ADC counts/ JLS 

Noise 0 ADC-counts + 4 ADC-counts 

The Monte Carlo program performs a detailed signal 

simulation and returns, for each signal, a vector containing 

100 consecutive values broadly centered ((T = 0.2 p,s) on 
the inflexion point of the signal leading edge, together with 

the parameter values used as input [5]. The time spread 
takes into account the time resolution of the hit finding 
procedure. Using the data contained in the vector, includ- 
ing the values of the amplifier decay time (Q) and the 
baseline slope (b), a pattern of activation for the network 
inputs is created. 

These patterns are repeatedly applied to the network; a 
complete cycle is called an epoch. At each iteration k, an 

error signal pj is computed for each jth output, based on 
the difference between the output value and the true value 
coming from the simulation. The energy function of the 

network is defined as the sum of the errors squared 

E,=;&?. 

Its value is propagated backwards through the network to 
modify each weight proportionally, in order to be mini- 

mized. This is called gradient descent procedure [6]. The 
updating equation is 

Ayj(k) = - ez + aAwij(k - I), 

11 

where the proportionality constant E is called learning rate 

(0 < e < 1) and (Y is the momentum factor i0 < LY < 1). If 
random noise is added, its perturbation of the gradient 

descent algorithm is often enough to prevent the system 
from falling into a local minimum. 

The training starts using relatively high values of the 
learning rate, momentum and noise; the factors are gradu- 
ally changed during the training over several thousands of 
epochs. An example of the evolution of the energy func- 
tion during the training, for the architecture with 50 neu- 
rons in the hidden layer, is shown in Fig. 2. A training 
session like this one takes about 150 hours of CPU time on 
the above mentioned AXP computer. 

4. Results 

Two different signal sets, one containing lo4 Monte 
Carlo signals and one consisting of about 5 X lo4 signals 
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coming from real data acquisitions are used to test and 
compare the response of the network with that of the 

best-fit technique using the CERN Minuit package [7]. The 
first sample is used to evaluate the linearity and the 

intrinsic network resolution; the second one is used to 
compare physical results obtained with the two different 

approaches. 

Epoch number 

Fig. 2. Evolution of the energy function during the training of the 

hidden layer. neural network using 50 neurons in the 
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Fig. 3. Capability of the network to get the pulse height (h,) of 

the input signal (NN = neural network response, MC = Monte 

Carlo input value). 

4.1. Pulse height response 

In Fig 3a the value of the pulse height returned by the 
network (50 neurons in the hidden layer) is plotted versus 
the value used as input in the Monte Carlo simulation 
program. The response of the network is linear and has a 

uniform resolution over the whole range of variation of the 

parameter. To evaluate the intrinsic resolution, the error 
distribution is plotted and then fitted with a gaussian line 

shape (Fig. 3b). The resolution is about 0.73 ADC counts 
that corresponds, assuming a gain of 330 electrons per 
ADC-count (like in the prototype readout system), to about 
240 electrons. This result is well below the value of the 
electronic noise that affects the normal TPC data (= 1300 
electrons RMS, see Ref. [3]). 
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4.2. Rise time resolution 

In Fig 4a the value of the rise time returned by the 
network (50 neurons in the hidden layer) is plotted versus 
the value used as input in the Monte Carlo simulation 
program. The response of the network is again linear and 
has an uniform resolution over the whole range of varia- 
tion of the parameter. Its intrinsic resolution, shown in Fig. 7, (ns) 

4b (u < 0.01 ps) is very good if compared to the rise time 

spread due to the electron longitudinal diffusion (ranging 
Fig. 4. Capability of the network to get the rise time (7,) of the 

input signal (NN = neural network response, MC = Monte Carlo 

from 0.5 to 0.7 ps for an electric field of 350 V/cm [3]). input value). 
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Table 2 

Single point spatial resolution obtained with different approaches 

(h.u. is the number of neurons in the hidden layer) 

Hit finding procedure 331+3 pm 

Hit finding procedure + neural network (200 h.u.1 192 f 3 pm 

Hit finding procedure + neural network (100 h.u.1 195 f 3 ym 

Hit finding procedure + neural network (50 h.u.1 208+3 pm 

Hit finding procedure + best fit 142?3 p,m 

4.3. Spatial resolution 

The evaluation of the capability of the network to get 

the pulse position of the input signal can be made measur- 
ing the TPC single point spatial resolution along the drift 
direction. Using vertical muon events, the arrival time 
resolution is given by the width of the distribution of the 

residuals to a straight line fit made on three contiguous 
channels at the time, to minimize the contribution from 

multiple scattering [3]. From the knowledge of the electron 
drift velocity (1.24 mm/p,s for an electric field of 350 

V/cm), it is straightforward to obtain the single point 

spatial resolution. 
To get the valid set of data to be processed by the 

neural network algorithm or by the best-fit procedure, we 
use a quick mathematical filter which relies on the detec- 
tion changes in the variance of the signal. A possible 
extension is to implement a neural network filter, as 

recently suggested in Ref. [8]. 
The results for different approaches are shown in Table 

2. The single point spatial resolution measured using the 

hit finding procedure alone is improved by the neural 

network algorithm to a value not far from that obtained by 
the best-fit method. This is evident in Fig. 5, where the 

bidimensional image of the track of a cosmic muon cross- 
ing event is plotted using three different methods of analy- 
sis. The two coordinates are proportional to the TPC 
channel number and to the drift time respectively. The 
grey level of the pixel codes the pulse height, proportional 
to the detected charge. The increased ionization near a 
secondary interaction point along the track is easily no- 

ticed. 

4.4. Computing time 

The CPU time needed to process a complete TPC 
image (192 channels), using the above mentioned ap- 

Table 3 

CPU time values taken to process a complete TPC image 

I/O procedures 0.94 s 

I/O + hit finding procedure 1.81 s 
I/O + hit finding procedure + neural network (200 h.u.1 2.15 s 

I/O + hit finding procedure + neural network (100 h.u.1 2.01 s 

I/O + hit finding procedure + neural network (50 h.u.1 1.95 s 

l/O + hit finding procedure + best-fit 21.46 s 

proaches, is shown in Table 3. From the table one can see 
that the neural network technique is one order of magni- 
tude faster than the best-fit one. The computational time 
depends little on the architecture of the network and it is 
dominated by the input/output procedures and by the 

hit-finding algorithm. Considering the network simulation 
alone, we find that it is two orders of magnitude faster than 

the minimization process. 

5. Conclusions 

We find that the accuracy offered by an artificial neural 
network to extract physical information from TPC signals, 
such as those provided by the ICARUS 3 ton prototype, is 

good enough for this specific problem. The approach 
offers a good compromise between processing time and 
output resolution. 

The implementation of a neural network algorithm on a 

sequential scalar computer offers three main advantages 
with respect to the standard best-fit procedure: 

the network approach is much faster, even when the 

simulation is performed with a sequential scalar com- 
puter; 
the process of extracting information can be limited to 
the few parameters of physical interest; 
the process of extracting information is not bounded to 
an analytical line shape and in principle it is possible to 
train the network using Monte Carlo data or even real 
signals. 

Nevertheless this approach presents some weak points: 
- it is not possible to build a statistical estimator whose 

value is intended as a meaningful guess for the un- 
known value of a parameter, or define a “confidence 
level” as in the normal best-fit procedures; 

- the mathematical information stored in artificial neural 
networks is not directly controllable. It is very hard to 
locate possible error points and made corrections. The 
only way to do this is to perform a new training with a 
more precise example set. 
The main disadvantage related to the use of a sequen- 

tial scalar computer is that the training time is proportional 
to the total number of weights to be optimized; this limits 
the number of possible network configurations to be stud- 

ied. Recently it has been proposed (see Ref. [9]) to imple- 
ment a neural network algorithm of our type on a massive 
parallel computer (APE-loo). This certainly would speed- 
up the calculations and make possible the use of more 
suitable, but more complex, network architecture. 

The present neural network approach is particularly 
convenient when one needs a fast event analysing algo- 
rithm, as in the case of the on-line event selection foreseen 
for the ICARUS experiment [l]. The information from the 
network could be used to recognize the main features of 
the signals allowing a real-time event identification. The 
detector readout should be divided into a number of identi- 
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cal and independent subsystems with dedicated CPUs that 
accomplish the neural network simulation. In view of 

possible future application of this new technology in the 
ICARUS experiment further research and development 
work is needed. 
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